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Special problems are encountered in modeling the temperature dependence of the 
kinetics of heterogeneous,  condensed phase systems. In the division of the model for the 
reaction rate into two parts, a) f(a) which is physical (translational) and b) k(T) which is 
chemical (vibrational), complications arise in defining the temperature dependence of part 
a) which may take various mathematical forms and then in coupling it with the Arrhenius 
temperature  dependence of part b). The role o f f (a )  in thermal analysis systems is discussed. 
The concept of rate-controll ing step is applied to the simplification of the temperature de- 
pendent term. The significance of the compensation effect in these systems is described and 
an heuristic rationalization for it is suggested. Maximum practical temperature ranges for 
thermal analysis experiments and the effect of temperature measurement imprecision on ob- 
taining meaningful Arrhenius parameters are discussed. The WLF and other equations used 
to describe the temperature dependence o f f ( a )  are not found to couple compatibly with the 
Arrhenius equation. 

This paper discusses many of the special problems which one faces in the 
modeling of the temperature dependence of the kinetics of the reactions in 
crystalline and amorphous condensed phase systems. It is, in the greater 
part, based on a lecture given and published at the Fifth Seminar in Memory 
of Stanislaus Bretsznajder [1]. 

It is convenient to divide the mathematical model for the rate of a chemi- 
cal reaction into two parts, a) The first is an expression which describes the 
ability of  molecular species or functional groups to come in contact with one 
another so that they will have the potential to exchange energy, electrons or 
atoms, and/or, after such an exchange, to separate to form intermediates 
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and products, and we designate this expression, f(a). b) The second part is 
an expression which describes the ability of these "reacting species" in a), 
once they meet, to overcome any free energy barriers which stand in the way 
of the reaction taking place. This seems to be a valid way to separate the two 
parts. Part a) is often a physical process (translational) and, when tempera- 
ture dependent, can only sometimes be modeled by the Arrhenius equation. 
Part b), being chemical in nature (vibrational), is nearly always temperature 
dependent and usually is modeled by the Arrhenius equation. 

There is one ambiguity in making this separation. The most common 
form of the Arrhenius equation used for the temperature dependence of the 
rate of reaction is 

k = A e x p  (-E/RT) (1) 

where k is the rate constant, A, the preexponential factor, E, the energy of 
activation, R the gas constant, and T, the absolute temperature. When Eq. 
(1) is developed for an elementary chemical process, A represents the "fre- 
quency factor" in collision theory or the "entropy" part of the free energy of 
activation in transition state theory. In the complex reactions of thermal 
analysis, it is not clear at what point one can distinguish per se between the 
functions for the macroscopic motions of reactant and product species in 
f(a) and the functions for microscopic motions along the reaction coor- 
dinate contained in frequency factor or transition entropy, A. However since 
it is impossible to separate f(a) and A by analysis of experimental kinetics 
data, the question is academic as the actual separation would only need to 
be taken into account during a complete and detailed modeling of the reac- 
tion kinetics. 

Role off  (a) in thermal analysis systems 

Before discussing the applicability of the Arrhenius expression to these 
systems, it is instructive to discuss the role of part a) in the kinetics of the 
condensed phase systems of thermal analysis. This is necessary since the 
mathematical form for the model for part a) (which is usually simple and un- 
complicated for homogeneous systems) is often both complex and obscure 
for condensed phase systems. Even more to the point, these "collisions" in 
the solid phase are often strongly dependent upon temperature. This 
temperature dependence may even be of the Arrhenius type. An example of 
this case is the Fickian diffusion of reactants in polymers well above their 
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glass transition. In some examples to be described later other expressions 
for the temperature dependence may be appropriate. Any temperature de- 
pendence of part a) must be coupled with the Arrhenius temperature de- 
pendence of part b) in the formulation of a mathematical model for the 
temperature dependence of the overall reaction rate. 

The situation is usually quite simple for the kinetics of homogeneous 
reactions. It is assumed in the mathematical modeling of part a) that the 
reaction rate is proportional to the partial pressures of the reacting species 
for homogeneous gas phase reactions and proportional to the concentra- 
tions of reactants for homogeneous reactions in solution. Some sort of mild 
ruth power (0 < m < = 1) temperature dependence is often postulated for 
the model from the kinetic theory of gases for the collisions of these species 
(or for the entropic term of the statistical mechanical model for the transi- 
tion state) but this temperature dependence is usually ignored in com- 
parison to the exponential temperature dependence of the Arrhenius 
equation. 

However, even if there are no heterogeneous effects such as dust, walls, 
etc., catalyzing reactions in gaseous and solution systems, pressures and 
concentrations are not completely satisfactory experimental variables to use 
in describing the function for degree of advancement or extent of reaction in 
the rate equation which is the term we have already designated as f(a). One 
has to take into account "nonideality" resulting from molecular attraction, 
finite size of atomic species, solvation and other complicating factors. This 
is sometimes accomplished by defining a function called "activity" to replace 
pressure or concentration terms in the equations for f(a). In homogeneous 
systems this activity or its proportionality factor to the measured physical 
property, the activity coefficient, takes into account the departure from 
ideality of the real reaction system. 

The concept of activity may be useful at least in the discussion of the 
kinetics of heterogeneous condensed phase systems, if not in the actual for- 
mulation of their equations. Certainly, in many cases, the reaction rate will 
be dependent upon the mobility of at least one of the reacting or produced 
species. Even in dissociation reactions for crystalline solids in which low 
molecular weight product gases such as water or carbon dioxide may diffuse 
easily from the system, the initiation step often involves the "random flight" 
or "fractal kinetics" movement of imperfections or vacancies through the 
crystal lattice (often resulting in Avrami-type kinetics behavior). However, 
assessment of the utility of such an activity function model must await a dis- 
cussion of the problems involved in the mathematical modeling of the 
kinetics of the condensed phase. 
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It is instructive to look at a few examples of the types of complexities that 
can be expected in the kinetics of these systems. Reaction rate is measured 
from changes in an extensive property of the system such as mass, enthalpy, 
volume, etc. This discussion is framed in terms of mass as it is a measured 
property which is often assumed to be relatable to the extent of reaction 
function in setting up equations for the kinetics of condensed phase systems, 
and mass is used widely in thermal analysis kinetics by substituting mass for 
pressure or concentration in the equations which are traditionally used to 
represent the kinetics of homogeneous systems. (Mass can be substituted 
successfully for concentration since the density of the condensed phase 
changes very slowly with changing temperature.) The assumption that the 
rate is proportional to a function of the mass (which may contain a propor- 
tion of active groups) produces satisfactory results for some systems, for ex- 
ample: 1) polymerization (cure) and depolymerization (degradation) 
reactions often take place in the liquid state (albeit quite viscous) by free 
radical chain mechanisms whose stationary state approximations yield equa- 
tions related to the mass of the substrate, 2) vaporization of a liquid or 
evaporation of a volatile substance from a solid will often follow the 
Langmuir molecular effusion equation and be proportional to the exposed 
surface area which may be mass dependent as in the case of a spherical 
drop, 3) in the analysis of fluorescence glow curves, the number of electrets 
is proportional to the mass, 4) many cases of diffusion from a polymer 
matrix depend on the mass of the diffusant in the material, and 5) other 
cases of surface reactions may be related in some way to the mass such as 
contracting spheres or cylinders or nucleation (Avrami) models for the 
kinetics. Of course, there are many other cases. 

However equations in whichf(a)  is assumed to be a function of mass can 
be a very poor choice in that they assume that each atom or molecule in the 
bulk of the reacting material or on its surface has the same activity for reac- 
tion. This is not the case for many heterogeneous reactions as, for example, 
in the case of surface catalysis where different surface sites have differing 
catalytic activity and the more active sites get used up first. In another case, 
the partial pressure of a gas in contact with the substrate may be the crucial 
factor in the defining of activity. Hence specimen mass often may not be the 
significant factor in the formulation of the rate equation. 

In other cases, physical changes in the specimen may be the deciding fac- 
tor as to whether or not a reaction will occur. Melting, softening, gelling, 
glassing, or reaching a region of miscibility are temperature-dependent  
phenomena and the mobility of reactants and products may depend upon 
the development of such events. Sintering is a temperature-dependent  
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phenomenon which can destroy catalytic activity. The activity of the reac- 
tants in such cases may be related to the mass of material, but the crucial, 
rate-eontroUing event may be the occurrence of the temperature-dependent 
physical transformation which is not mass dependent. Thus, to take an ex- 
treme case, melting with decomposition, at one temperature the activities of 
the reactants, held in a rigid lattice, are essentially zero, and, at a slightly 
higher temperature,  above the melting point, their activities suddenly be- 
come very great, and the rate equation may need to include a large step 
function in temperature at that point to represent this increase. 

Coupling of Arrhenius equations - rate controlling step 

Therefore, from the above discussion, it is obvious that the f ( a )  function 
for each heterogeneous reaction system may include its own unique form of 
temperature dependence.  In many cases, the temperature dependence may 
be easily separated from the remainder o f f ( a )  and incorporated into b), to 
form the temperature dependent term in the rate equation which we desig- 
nate as k(T) (the overall or "global" rate constant). In some of these cases, 
the temperature dependence of f ( a )  will have an exponential (Arrhenius) 
form. For example, often material diffusion or viscous flow has an Arrhenius 
temperature dependence.  Here  the temperature terms may be coupled 
mathematically so that a single overall global energy of activation parameter 
will satisfy the temperature dependence of the rate of reaction. This case is 
mathematically indistinguishable from those in which k(T) is composed of 
several elementary rate constants due to a complex kinetics mechanism for 
the chemical reaction. The two cases for which an overall global energy of 
activation may be obtained from coupled Arrhenius equations are: 

a) The Arrhenius terms are present as a product, e.g., (exp ( -E1 /RT)  ... 

e x p ( - E i / R T ) / e x p  ( -E j /RT) ) .  Stationary state solutions of free radical chain 
reaction kinetics such as in polymer cures or degradations can often be 
reduced to this form. Other reactions whose equations include a tempera- 
ture dependent  equilibrium constant or a diffusion eonstant also can be of 
this form. These cases yield a global E/R  and lnA. 

b) An algebraic summation of Arrhenius terms - a exp( -Ea /RT)  + b 

exp ( -Eb /RT)  + c exp( -Ec /R7  O + . . . .  Most equations for the kinetics of 
complex reactions in solids are of this type. This includes cases of reversible, 
autocatalytic, independent, parallel and consecutive reactions. There can be 
a number of temperature dependent  events separate from those involved in 
overcoming the free energy barrier along the chemical reaction coordinate; 
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for example, melting can be followed by diffusion of reactants, the chemical 
reaction and finally by the diffusion of products. 

There is no way that a single Arrhenius expression can be an exact 
equivalent of such an arithmetic series of individual Arrhenius terms as in 
case b). However, the concept of "rate-controlling step" [2] allows one to ap- 
proximate the temperature dependence by using a single energy of activa- 
tion. For example, if one of a series of consecutive processes goes at a much 
slower rate than all of the others then the overall rate will be dependent 
primarily upon its kinetics parameters. (N.b., the rate-controlling step is not 
necessarily the one with the slowest rate, see ref  [2]; also the "rate-control- 
ling step" concept is quite arbitrarily extended in this present paper to apply 
to systems which are composed of sets of "nonelementary" reactions.) The 
"rate-controlling step" concept saves the day in the analysis of the kinetics of 
many complex solid phase reactions. Even though the rate-controlling step 
may change as the reaction proceeds or as the experimental conditions 
change, appropriate rate constants and energies of activation often can be 
calculated for the one reaction which is controlling the rate in its particular 
region of dominance. 

(It should be noted that, in these discussions, the eases of the kinetics of 
composite systems for which two or more completely independent reactions 
are taking place in the same temperature range are not included. Such sys- 
tems require a completely different kind of mathematical analysis to attempt 
to deconvolute the component processes and separate their kinetics 
parameters.) 

Probably the most important rate-controlling step in thermal analysis is 
diffusion. If was shown that the rate constant will be proportional to the dif- 
fusion constant for homogeneous "self stirred" reactions by Smoluchowski 
[3] and this is probably also the case in many heterogeneous systems. 

(There is another form of temperature dependence of the rate which is 
often successfully applied to viscoelastic properties and transformations in 
the glass transition region - the WLF or VTF equations which will be dis- 

cussed later.) 

The Arrhenius equation 

When Arrhenius proposed his equation for the temperature dependence 
of the rate of reaction one hundred years ago [4], he based his arguments 
upon thermodynamic considerations. It was not until later that gas phase 
kineticists brought up the notion of "tails of Boltzman energy distribution" as 
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a rationalization of the equation based on kinetic theory of gases. The pen- 
dulum swung back when transition state theory based on a statistical 
mechanical development was introduced over fifty years ago [5]. It is this 
latter approach that will be evoked later on in the discussion of the "com- 
pensation effect". 

30 c: 
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Fig. I An Arrhenius plot of In k vs. 1/T 

Equation 1), the Arrhenius equation, is used in its logarithmic form as in 
Eq. (2) for calculating the parameters, lnA and E/R. 

Ink = l n A -  (E/R)(1/T) (2) 

Therefore,  when this equation describes the temperature dependence of 
the rate, a plot of In k against 1/T as shown in Fig. 1 will result in a 
reasonably straight line whose slope will be -E/R and whose intercept at in- 
finite temperature will be In A. Equation (2) may be multiplied by T to ob- 
tain [6] 

T l n k  = ( lnA)T-  (E/R) (3) 

and a plot of T In k against T will have a slope of In A and an intercept at 
zero temperature of -E/R as shown in Fig. 2. It can be seen from these 
figures that even for an extended experimental temperature range (91 
degrees), the slope and intercept are calculated from data covering only a 
short segment of the total curve. However, if one uses the same sort of 
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regression analysis on the same sets of (k, T) data, then, of course, the two 
plots will yield identical values for the two parameters, In A and E / R .  The 
only advantage of one equation over the other is that a graph of Eq. (2) 
gives an easier visual comparison for variations in In A for a set of Arrhenius 
curves while a graph of Eq. (3) allows a better visual comparison for varia- 
tions in E / R .  (This is true only if the whole extrapolation range of tempera- 
ture is plotted as in the above figures. If only the experimental temperature 
range is plotted, then large changes in E / R  can be better observed from 
variations In the slope of Eq. (2).) 
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Fig. 2 An Arrhenius plot of T In k vs. T 

However, Eqs (2 and 3) are not trivially introduced here as they serve to 
emphasize the complete interdependence of the two Arrhenius parameters, 
E / R  and In A. This is a basic property of the Arrhenius equation and this 
relationship between E / R  and In A has been long recognized as a raison 
d'&re for the "compensation effect" which is discussed next. The mathemati- 
cal foundation for this interdependence has been analyzed and discussed in 
papers which are briefly reviewed later. 

Compensation effect 

Before discussing the Arrhenius equation, we will define another equa- 
tion based upon it. The compensation effect equation is defined as a linear 
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relationship between the Arrhenius parameters, InA and E / R ,  for a series of 
"similar" reactions, 

In A = a E / R  + b (4) 

so that,In k = a ( E / R )  + b - ( E / R ) / T .  (5) (5) 

1/a is called the "isokinetic temperature", Tiso, and b is equated to In kiso 
which is called the isokinetic rate constant, thus, 

ln A = E / R T i s o  + In kiso (6) 

or, 
In klkiso = E / R  (l/Tiso- l/T). (7) 

Any case in which there is a "compensation effect" between In A and E / R  

values which were obtained from experiments upon identical specimens 
studied under the same conditions must be a false effect and either the 
result of scatter of the experimental data, misapplication of kinetics equa- 
tions, or errors in the experimental procedures. Most often such a false or 
"pseudo" effect is explained by the unavoidable scatter of impreeisly calcu- 
lated slope and intercept ( E / R  and In A) values about the mean value of the 
measured In k range. Papers discussing the mathematical correlation de- 
pendence for E / R  and In A have been reviewed by Sestak [7] and the sen- 
sitivity of scale values of Arrhenius coefficients, especially for 
decomposit ion reactions of the type, A (solid) = B (solid) + C (gas), have 
been thoroughly analyzed by Pysiak [8]. 

"Real" compensation effects occur only with Arrhenius parameters from 
experiments on similar reactions (such as the hydrolysis of a series of 
homologous esters) or reactions in which the substrate has been chemically 
or physically modified in a systematic manner (such as reactions on a series 
of differently pretreated catalysts). The criteria for identifying cases of real 
compensation effects have been rediseussed in recent literature [7, 9-11] and 
in older papers [12-14]. As pointed out by Agrawal [9], the criterion for a 
true compensation effect is the convergence of Arrhenius curves to a single 
point (ln kiso, 1/Tiso. 

A heuristic explanation for the existence of this relationship is suggested 
from transition state theory where the rate constant for an elementary 
chemical reaction is given by 
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rate constant = K(k'T/h) exp (-AF*/RT) = 

= K(k'T/h) exp (AS*m) exp (-AH*/RT). (8) 

where K is the "transmission coefficient", k' is the Boltzman constant, h is 
the Plank constant, and AF*, AS*, and AH* arc the Gibbs free energy, the 
entropy and the enthalpy of activation. Thus the Arrhenius preexponential 
term, A, can be associated with the entropy of activation, K(k'T/h) cxp 
(AS*/R) and the Arrhenius E/R with the enthalpy of activation (AH*/R). 
The complex heterogeneous reactions which comparise the mechanism of 
many condensed phase kinetics systems are certainly not "elementary" but 
the same laws of thermodynamics hold for them. It has been suggested that 
the rate-controlling step of a reaction sequence is the one which contributes 
most to the free energy of activation, AF*. For complex systems, the poten- 
tial energy surface in the transition region will be altered by minor changes 
in the physical or chemical propertics of the substrate. However, when dif- 
fering reaction paths are competitive with one another, they will all have ap- 
proximately the same value for AF*. On the other hand, in these cases, the 
ratio of the entropy contribution, AS*, to the enthalpy contribution, AH*, 
may increase considerably as the mechanism shifts from one controlled by a 
chemical reaction to one controlled by a physical one so that since 

AH* + TAS* = AF* = constant. (9) 

This variation in AH*/AS* at constant AF* is, of course, just a statement of 
the compensation effect. Similar arguments have been used in the past to ex- 
plain the presence of the compensation effect for organic reactions in solu- 
tion [15]. 

The temperature range in thermal analysis kinetics 

It should be quite simple to determine whether the Arrhenius equation 
does or does not apply to a particular set of kinetics data. However,  in ac- 
tual cases, it is difficult to decide if the data are sufficiently reliable to give 
unique values for its parameters. There is no reason why several experi- 
ments on the same substance under identical procedural  conditions should 
show a compensation effect and, as mentioned above, it has been suggested 
that, in such a case, the "pseudo" compensation effect is a demonstration of 
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an unavoidable random error in the determination of the slope and intercept 
of an Arrhenius plot. It is true that many calculations of Arrhenius 
parameters are performed over insufficiently wide ranges of rate and 
temperature and, for such cases which result in a large scatter of E / R  and 
lnA values, a "pseudo" compensation effect is inevitable. 

The range of the variable, k, which can be measured by thermal analysis 
experiments can be estimated. Fast reaction rates in thermal analysis be- 
come heat and/or material flow dependent so time constants of less than 30s 
are certainly untrustworthy. This value will serve as an upper limit for the 
rate constant, k. Modern TG or DCS instruments have very stable base lines 
so that a reaction can be followed over a period of a week or 604, 800 s 
which may be used as a lower limit for k. Thus one can calculate a maximum 
practical experimental temperature range in Table 1, where temperatures 
are obtained from the equation, 1/Ti = (In A - In k i ) / ( E / R ) ,  for kl = 1/30 s, 
k2 = 1/604, 800 s and several values of In A and E / R  which are typical for 
polymer degradation reactions. 

The temperature ranges (7"2-7"1) in Table 1 from 133 to 182 K show that a 
reaction temperature range of at least 100 degrees may be obtained by as- 
siduous kinetics studies. A 100 degree range of temperatures will cover only 
ten to twenty percent of the total temperature (or l/T) scale in most thermal 
analysis experiments (as illustrated if Figs 1 and 2). T h u s  this 100 degree ex- 
perimental temperature range may be necessary for obtaining a reliable fit 
to the Arrhenius equation. Week long experiments may not be "practical" in 
many applied studies. However, certainly E / R  and In A values calculated 
from experiments covering a range of less than fifty degrees are of doubtful 
scientific value. Also, large experimental temperature ranges are necessary 
to expose changes in reaction mechanism which manifest themselves 
through changes in the slope of an Arrhenius plot [16]. 

At the constant rate increment in Table 1, the percentage change in 
temperature depends on the magnitude of In A and is independent of E / R ,  
while the reciprocal temperature range depends on E / R  and is independent 
of In A. Obviously a wider experimental temperature range is realizable 
from reactions with low energies of activation than from those with high 
energies [17]. 

Temperature imprecision 

Temperature imprecision is probably the greatest source of error in ther- 
mal analysis experiments. Temperature imprecision tends to increase with 
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increas ing  t empe ra tu r e .  I f  one assumes a cons tan t  p e r c e n t a g e  e r ro r  in T (or  
l /T) ,  then  a 4 - 6 K t e m p e r a t u r e  range  would  give the same  imprec i s ion  in 
Ar rhen ius  p a r a m e t e r  calculat ion as would t e m p e r a t u r e  ranges  of  40 - 60, 
400 - 600 or 4000 to 6000 K. On the o ther  hand,  if the imprec is ion  in 
t e m p e r a t u r e  is constant  th roughout  the t e m p e r a t u r e  scale then the same im- 

prec is ion  would be ob ta ined  for  t e m p e r a t u r e  ranges  of  4 - 104, 40 - 140, 400 
- 500, 4000 - 4100, etc. degrees .  Each  exper imenta l  appa ra tu s  will have its in- 
dividual t e m p e r a t u r e  e r ror  distr ibution which will lie somewhere  in be tween  

cons tant  e r ro r  and  constant  pe r cen t age  e r ro r  so it is imposs ib le  to cons t ruc t  
a typical  t e m p e r a t u r e  e r ror  model  for  Arrhen ius  plots.  

Table I T1 and T2 Calculated for kl = 1/30 s, k2 ~ 1/604, 800 

lnA E/R I"2 I"1 (l/T1 - 1//"2) (/'2 - T1) % change in 
(ln 1/s) (K) (K) (K) (1/I0 (K) T (and l/T) 

35 30.000 781.2 621.0  0.0003301 160.15 22.8 
35 25.000 651.0 517 .5  0.0003961 133.47 22.8 
30 25.000 748.5 577 .4  0.0003961 171.06 25.8 
30 20.0~30 698.8 461 .8  0.0004952 136.94 25.8 
25 20.000 704.2 522 .1  0.0004952 182.05 29.8 

T h e r m a l  analysis exper iments  p e r f o r m e d  at changing t e m p e r a t u r e  such 
as at constant  heat ing  ra tes  should cover  an equally wide range  of  1 /T  values 
if Ar rhen ius  p a r a m e t e r s  are to be  calcula ted.  Again ,  this r equ i r e s  consider-  
able pa t i ence  since exper iments  at fast heat ing ra tes  where  the rma l  and 
mate r i a l  diffusion may  be  dominant  factors  are  not acceptab le .  However ,  

large exper imen ta l  t e m p e r a t u r e  ranges  can be obta ined .  For  example ,  values 
for  r eac t ion  ra tes  have been  m e a s u r e d  for  t e m p e r a t u r e  ranges  of  g rea t e r  
than 100 degrees  dur ing an invest igat ion of the t he rma l  deg rada t ion  of  
po lymers  at heat ing ra tes  f rom 0.0001 to 0.1 degrees / sec  (9 deg /day  to 6 
deg/min)  [16]. The  imprec is ion  in the m e a s u r e m e n t  of  the t e m p e r a t u r e  of  a 
spec imen  is usually grea te r  during p r o g r a m m e d  t e m p e r a t u r e  change experi-  
ments  than  i so thermal  ones. However ,  at constant  hea t ing  rate,  such e r ro r s  
t end  to be  systematic .  Sys temat ic  e r rors  in t e m p e r a t u r e  m e a s u r e m e n t  have 
much  t~ss effect  than  r a n d o m  e r ro r s  upon  the  prec is ion  of E / R  and In A 

values ca lcula ted  for  the Arrhenius  equat ion.  
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The WLF equation 

Another type of exponential temperature dependence is successfully ap- 
plied to the kinetics of glass and other second order physical transitions and 
viscoelastic parameters. Often these transformations are analyzed by a 
dynamic oscillatory technique such as Dynamic Mechanical Analysis, DMA, 
or Dielectric Thermal Analysis, DETA. A term "a", the shift factor (which is 
proportional to the rate constant), is used for systems in which shifts in the 
reaction rate are obtained by varying the oscillating frequency. A logarith- 
mic plot of a viscoelastic property at temperature 7"1 can be obtained from a 
plot at another temperature T2 by shifting the curve along the logarithm 
time (or logarithm frequency) axis an amount equal to In a(1, 2), ( the time- 
temperature superposition principle). The temperature dependence of In a 
is often fitted to the Vogel,Tammann-Fiilcher equation [18], 

In a = in A + 1/b (T-To,), (10) 

or its equivalent, the Williams-Landel-Ferry (WLF) equation [19], 

In a = - c ( T - T o ) ~  (c '  + T - To) .  (ii) 

The WLF and Vogel equations for temperature dependence are applied 
to viscoelastic processes occurring at temperatures between Tg and Tg + 

100 K [20]. Therefore when, as is often the case, the increase in activity of a 
reacting species depends on a change in a viscoelastic property, temperature 
dependent functions as in Eqs (10 and 11) should be considered. These 
types of kinetics behavior with respect to temperature are interpreted in 
terms of the Doolittle free volume expression. 

In the fitting of temperature dependence of the rate for thermal analysis 
systems in which both viscoelastic and chemical processes are involved, 
either the Arrhenius or the WLF equation has been applied. The two equa- 
tions do not lend themselves to coupling to form a reasonably simple analyti- 
cal function. Therefore analysis has been limited to cases in which either the 
viscoelastic or the chemical process is rate-controlling. 

Conclusions 

Formally setting up separate temperature functions for the f ( a )  a n d  

k(T) and combining them to produce an overall function for temperature 
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dependence of the rate may be a helpful routine for developing a satisfac- 
tory model for the kinetics of thermal analysis systems. However, in the 
development of realistic models of f ( a )  for reaction kinetics, the same 
problems will be present whether one uses "activity" or any other concept in 
their development. The separation of the temperature dependence of the 
physical movement from f ( a )  and uniting it with the temperature depend- 
ence of the chemical reaction, k(T), will not change the final form of a 
properly formulated rate expression. However, the concept of activity of the 
reacting species gives a more vivid picture of what is going on and may be a 
psychological help in arriving at this proper formulation. 

In this paper, we have tried to stress the roll o f f ( a )  in the temperature 
dependence of the rate and how this temperature dependence can have 
forms other than the Arrhenius equation such as the WLF equation or step 
functions. The importance of the concept of "rate controlling step" in the 
simplification of the rate equation was emphasized and the significance of 
the compensation effect was discussed. 

It was found to be necessary to have temperature and rate data which 
cover a wide range of values to test the applicability of the Arrhenius equa- 
tion. It is satisfying when one obtains a good fit of the data over the whole of 
such an extended temperature range. However obtaining a constant E does 
not prove that one has a correct model for the kinetics mechanism. To 
answer the question, "How does one know if one has the correct form of 
f(a)?", each proposed equation must be tested under many differing ex- 
perimental conditions systematically to see how its parameters change with 
temperature,  heating rate, specimen weight, geometry, degree of subdivision 
and thermal pretreatment, purge gas conditions, and all other procedural 
factors which might affect the rate. Maciejewski [21] has published recently 
an excellent and provocative discussion of many of the problems which we 
must face when we try to interpret solid state kinetics. Thermal analysis is 
capable of giving only a part of the information needed for assigning reac- 
tion mechanism. Other techniques which determine the chemical and physi- 
cal changes even more directly should be employed concurrently with 
thermal analysis methods. Examples of such techniques are Fourier trans- 
form infrared spectroscopy, gas chromatography, mass spectrometry, X-ray, 
electron and neutron diffraction, various microscopic techniques, etc. 

This paper has not presented any great breakthrough in modeling ther- 
mal analysis kinetics. However, it is hoped that it has brought in focus a few 
old concepts that one may lose sight of when becoming bogged down with 
the fine structure of modeling the kinetics of a specific reaction system. 
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Zusammenfassung  m Bei der Modellierung der Temperaturabh~ingigkeit der Kinetik bei 
heterogenen, kondensierten Phasen treten spezielle Probleme auf. In der Unterteilung des 
Modelles ftir die Reaktionsgesehwindigkeit in zwei Teile: a ) f ( a )  ist physikalisch (Transla- 
tion) und b) k(T) ist chemisch (Vibration) treten bei der Definierung der Temperatur- 
abh~ingigkeit yon Teil a) und dann bei der Verkniipfung mit der Arrhenius-schen 
TemperaturabMingigkeit yon Teil b) Komplikationen auf. Es wird die Rolle von f(a) in ther- 
moanalytischen Systemen besprochen. An einer Vereinfachung des temperaturabh[ingigen 
Termes wurde das Konzept des gesehwindigkeitsbestimmenden Schrittes angewendet. Es 
wird die Bedeutsamkeit des Kompensationseffektes in diesen Systemen besehrieben und 
dafiir eine heuristische Vereinfachung vorgeschlagen. Praktisch gusehen maximale 
Temperaturbereiehe fiir thermoanalytische Experimente sowie der Einflul~ der Ungenauig- 
keit der Temperaturmessung fiir die erhaltenen Arrhenius-Parameter wird diskutiert. Die 
zur Beschreibung der Temperaturabh~ingigkeit yon f(a) benutzten WLF und anderen 
Gleiehungen stellen keine Kompatibilit/it mit der Arrhenius-sehen Gleichung her. 
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